DIRECTORATE OF INTELLIGENCE Industrial Facilities (Non-Military) # Basic Imagery Interpretation Report Major Chemical Plants North Korea **Top Secret** 25X1 | RCS | 13/0038/7 1 | | |------|--------------------|------| | | | 25X1 | | DATE | MAY 1971 | | | COPY | 4 .4 ≈4 | | 10 | Approved For | Release 2008/05/29 : CIA-RDP79T00909A001 | 1000010021-2 | 25 | |--------------|--|------------------|----------| | | TOP SECRET RIIFE | RCS - 13/0038/71 | 25
25 | | | CENTRAL INTELLIGENCE AGENCY | | | CENTRAL INTELLIGENCE AGENCY Directorate of Intelligence Imagery Analysis Service ### **ABSTRACT** This report updates the previous basic reports on four major chemical plants in North Korea. The cut-off date for information is January 1971. Minor changes have been observed at three of the plants. An unidentified processing unit has been added to the ammonia synthesis building at Hungnam Nitrogen Fertilizer Plant and the ore handling facilities have been expanded at Sunchon Chemical Plant. Minor additions have been seen at facilities in the gas by-products and possible polyvinyl chloride production areas at Hungnam Chemical Plant Pongung. No changes were observed at Aoji Ri Synthetic Petroleum Plant Chosen. All four plants were observed operating on the latest photography. TOP SECRET RUFF TOP SECRET RUFF | Approved F | or Release 2008/05/29 : CIA-RDP79T00909A0 | 01000010021-2 | 0574 | |------------|---|---------------|--------------| | | TOP SECRET RUFF | | 25X1
25X1 | ## INTRODUCTION This report presents information on the current status of two chemical plants, a synthetic petroleum plant and a nitrogen fertilizer plant in North Korea (see Figure 1). - I. Aoji Ri Synthetic Petroleum Plant Chosen. - 2. Hungnam Nitrogen Fertilizer Plant. - Hungnam Chemical Plant Pongung. - 4. Sunchon Chemical Plant. Requirement COMIREX NOI Support Number 429218 -3- | | | FCRFT RUFF | | |--|--|--|--------------------------------------| | | | | | | | | | | | | | | COUNTRY | | NSTALLATION OR AC | CTIVITY NAME | | COUNTRY | | A D. C th. | ti. Deturbaum Dlant Chao | on. | KN | | AOJI RI SYNTNE
JTM COORDINATES | tic Petroleum Plant Chos | en | I | | 52TFC110090 | 42-31-12N 130-21-01E | | | | MAP REFERENCE | | • | | | | | 90-10HL, 4th ed, Jul 67, Scale | 1:200,000 | | (SEC | | NEGATION DATE (IT required) | | | | | | | | | | NA | | | | | | | | | BASIC DE | SCRIPTION | | | | BASTO DE | 2301(11 1101(| | | ivo apparo | in changes have been ebs | served at Aoji Ri Synthetic Pet | | | Plant Chocan c | ince December 1968 the | date of the latest photography | used in | | | | date of the latest photography | used in | | the previous r | eport. | | | | the previous r
The prese | eport. Ince of coal in the coal | receiving and storage area, th | e raised | | the previous r
The prese
position of th | eport.
ence of coal in the coal
me gasholders, and vapors | receiving and storage area, the coming from the carbonization | e raised
retorts/ | | the previous r The prese position of th condenser hous plant was oper | eport. Ince of coal in the coal The gasholders, and vapors The low-temperature The ing when seen on small | receiving and storage area, th | e raised
retorts/
 the | | the previous r The prese position of th condenser hous plant was oper | eport. Ince of coal in the coal The gasholders, and vapors The low-temperature The ing when seen on small | receiving and storage area, the coming from the carbonization plant indicated | e raised
retorts/
 the | | the previous r The prese position of th condenser hous plant was oper | eport. ence of coal in the coal ne gasholders, and vapors ne in the low-temperature rating when seen on small | receiving and storage area, the coming from the carbonization e carbonization plant indicated -scale photography of March an | e raised
retorts/
 the | | the previous r
The prese
position of th
condenser hous | eport. ence of coal in the coal ne gasholders, and vapors ne in the low-temperature rating when seen on small | receiving and storage area, the coming from the carbonization plant indicated | e raised
retorts/
 the | | the previous r The prese position of th condenser hous plant was oper | eport. ence of coal in the coal ne gasholders, and vapors ne in the low-temperature rating when seen on small | receiving and storage area, the coming from the carbonization e carbonization plant indicated -scale photography of March an | e raised
retorts/
 the | | the previous r The prese position of th condenser hous plant was oper | eport. ence of coal in the coal ne gasholders, and vapors ne in the low-temperature rating when seen on small | receiving and storage area, the coming from the carbonization e carbonization plant indicated -scale photography of March an | ne raised
retorts/
 the | | the previous r The prese position of th condenser hous plant was oper | eport. ence of coal in the coal ne gasholders, and vapors ne in the low-temperature rating when seen on small | receiving and storage area, the coming from the carbonization e carbonization plant indicated -scale photography of March an | ne raised
retorts/
 the | | the previous r The prese position of th condenser hous plant was oper | eport. ence of coal in the coal ne gasholders, and vapors ne in the low-temperature rating when seen on small | receiving and storage area, the coming from the carbonization e carbonization plant indicated -scale photography of March an | ne raised
retorts/
 the | | the previous r The prese position of th condenser hous plant was oper | eport. ence of coal in the coal ne gasholders, and vapors ne in the low-temperature rating when seen on small | receiving and storage area, the coming from the carbonization e carbonization plant indicated -scale photography of March an | ne raised
retorts/
 the | | the previous r The prese position of th condenser hous plant was oper | eport. ence of coal in the coal ne gasholders, and vapors ne in the low-temperature rating when seen on small | receiving and storage area, the coming from the carbonization e carbonization plant indicated -scale photography of March an | ne raised
retorts/
 the | | the previous r The prese position of th condenser hous plant was oper | eport. ence of coal in the coal ne gasholders, and vapors ne in the low-temperature rating when seen on small | receiving and storage area, the coming from the carbonization e carbonization plant indicated -scale photography of March an | ne raised
retorts/
 the | | the previous r The prese position of th condenser hous plant was oper November 1970. | eport. ence of coal in the coal ne gasholders, and vapors ne in the low-temperature rating when seen on small | receiving and storage area, the coming from the carbonization e carbonization plant indicated -scale photography of March an | ne raised
retorts/
 the | | The prese position of the condenser hous plant was oper November 1970. | report. Ince of coal in the coal are gasholders, and vapors are in the low-temperature ating when seen on small REF | receiving and storage area, the coming from the carbonization plant indicated -scale photography of March and FERENCES | ne raised
retorts/
 the | | The prese position of the condenser house plant was oper November 1970. Document CIA. RCS - Kyongh | eport. Ince of coal in the coal are gasholders, and vapors are in the low-temperature ating when seen on small REF | receiving and storage area, the coming from the carbonization plant indicated -scale photography of March and FERENCES | ne raised
retorts/
 the | | The prese position of the condenser house plant was oper November 1970. Document CIA. RCS - Kyongh | report. Ince of coal in the coal in the gasholders, and vapors in the low-temperature rating when seen on small REF | receiving and storage area, the coming from the carbonization plant indicated -scale photography of March and FERENCES | ne raised
retorts/
I the
ad | | The prese position of the condenser house plant was oper November 1970. Document CIA. RCS - Kyongh | eport. Ince of coal in the coal are gasholders, and vapors are in the low-temperature ating when seen on small REF | receiving and storage area, the coming from the carbonization plant indicated -scale photography of March and FERENCES | ne raised
retorts/
I the
ad | | The prese position of the condenser house plant was oper November 1970. Document CIA. RCS - Kyongh | eport. Ince of coal in the coal are gasholders, and vapors are in the low-temperature ating when seen on small REF | receiving and storage area, the coming from the carbonization plant indicated -scale photography of March and FERENCES | ne raised
retorts/
I the
ad | | The prese position of the condenser house plant was oper November 1970. Document CIA. RCS - Kyongh | eport. Ince of coal in the coal are gasholders, and vapors are in the low-temperature ating when seen on small REF | receiving and storage area, the coming from the carbonization plant indicated -scale photography of March and FERENCES | ne raised
retorts/
I the
ad | | Approved I | For Release 2008/0 | 5/29 : CIA-RDP79 | T00909A0010 | 00010021-2 | |---|--|---|---|--| | | TOP SEC | RET RUFF | | | | | | | | | | INSTALLATION OR ACTIVITY NAME | | | | COUNTRY | | | | | 1 | | | Hungnam Nitrogen Fertiliz | | | | KN | | | . ** | | | | | MAP REFERENCE | 1 127-37-12E | 1 | | | | 548th RTG. USATC, Series | 200. Sheet M038(| D-4HL. 4th ed. | Apr 68. Scal | e 1:200.000 | | (SECRET | | | | | | LATEST IMAGERY USED | | NEGATION DATE (If | equired) | | | | | | | | | | | | NA | | | | BASIC DESC | CRIPTION | | | | of the ammonia synthesis
November 1968, the date of
Other changes observed at
buildings and the dismant
Partial coverage of | of the latest pho
the plant inclu-
ling of one unio | otography used
ude the constru
dentified build | in the previ
ction of thr
ing (see Fig | ous r eport.
ee support
ure 2). | | the sulfuric acid and sup
ammonium sulfate producti
photography. The presenc
coming from the sulfuric
production areas indicate | erphosphate prod
on area was also
e of rail cars w
acid, ammonium s | duction areas wo
seen operatin
within the plan
sulfate, nitric | ere operatin
g on the Mar
t and vapors
acid, and g | g. The
ch 1970
seen
as | | • | REFERENC | CES | | | | | | | | | | Document | | | | | | CIA. RCS - 13/0235/69,
June 1969, | (TOP SE | n Fertilizer P
CRET RUFF)
6- | lant, North | Korea, | | | | • | | | | | TOP SEC | RET RUFF | | | # Page Denied | | | 101 35 | CRET RUFF | | | 25X | |---------------------------------|---------------------------------------|---|---|------------------|-----------------|--------------------| | | | | | | | 207 | | | | | | | | | | | | | | | | | | NSTALLATION OR AC | CTIVITY NAME | | | C | OUNTRY | | | | | | | | | | | lungnam Chemic | | ongung coordinates | | | <u>KN</u> | 0.E.V | | 2SCV790118 | 1 | 127-35-08E | | | 2 | 25 >
 | | AP REFERENCE | 1 | | | | | | | 48th RTG. USA | TC, <u>Series</u> | 200. Sheet M038 | 80-4HL. 4th ed. | Anr 68. Scale L | :200.000 | 05) | | (SE | CRET | | | | | 25 X | | ATEST IMAGERY US | ED | | NEGATION DATE (If r | equired) | | | | | | | | | | 25X | | | | | 1 | NA | | | | | | BASIC DE | ESCRIPTION | | | | | No signif | icant chan | gos have been -4 | oserved in the p | | * 4 * | | | t Hunanam Che | mical Plan | t Pongung since | February 1969, | the date of the | lites
Tataat | | | hotography us | ed in the | previous report | . Some minor ad | ine date of the | Talesi | | | nologiaphy us
† facilities | in the das | hy-products pro | oduction area an | d nossible nolv | served
vinyl | | | hloride produ | ction area | . In addition. | minor construct | ion and dismant | vinyi
Lina | | | ctivity has b | een observ | ed throughout th | ne plant (see Fig | gure 3). | | | | | | | | | | | | me pram | was III OD | eration when obs | | l | | | | arch 1970. Si | moke comin | a from the stack | served on partia | l coverage of | 205 | | | arch 1970. Si
nd fluctuation | moke comin | g from the stack | ks of the calcium | n carbide furnac | ces
it | | | nd fluctuation | moke comin
ns in the | g from the stack | ks of the calcium
cars within the p | n carbide furnac | ces
it | | | nd fluctuation | moke comin
ns in the | g from the stack
number of rail o | ks of the calcium
cars within the p | n carbide furnac | ces
it | | | nd fluctuation | moke comin
ns in the | g from the stack
number of rail o | ks of the calcium
cars within the p
January 1971. | n carbide furnac | 1† | | | nd fluctuation | moke comin
ns in the | g from the stack
number of rail o
vember 1970 and | ks of the calcium
cars within the p
January 1971. | n carbide furnac | 1† | 25 X | | nd fluctuation | moke comin
ns in the | g from the stack
number of rail o
vember 1970 and | ks of the calcium
cars within the p
January 1971. | n carbide furnac | 1† | 25 X | | nd fluctuation | moke comin
ns in the | g from the stack
number of rail o
vember 1970 and | ks of the calcium
cars within the p
January 1971. | n carbide furnac | 1† | 25 X | | nd fluctuation | moke comin
ns in the | g from the stack
number of rail o
vember 1970 and | ks of the calcium
cars within the p
January 1971. | n carbide furnac | 1† | 25 X | | nd fluctuation | moke comin
ns in the | g from the stack
number of rail o
vember 1970 and | ks of the calcium
cars within the p
January 1971. | n carbide furnac | 1† | 25X | | nd fluctuation | moke comin
ns in the | g from the stack
number of rail o
vember 1970 and | ks of the calcium
cars within the p
January 1971. | n carbide furnac | 1† | 25 X | | nd fluctuation | moke comin
ns in the | g from the stack
number of rail o
vember 1970 and | ks of the calcium
cars within the p
January 1971. | n carbide furnac | 1† | 25 X | | nd fluctuation | moke comin
ns in the | g from the stack
number of rail o
vember 1970 and | ks of the calcium
cars within the p
January 1971. | n carbide furnac | 1† | 25X | | nd fluctuation | moke comin
ns in the | g from the stack
number of rail o
vember 1970 and | ks of the calcium
cars within the p
January 1971. | n carbide furnac | 1† | 25) | | nd fluctuation | moke comin
ns in the | g from the stack
number of rail o
vember 1970 and | ks of the calcium
cars within the p
January 1971. | n carbide furnac | 1† | 25 X | | nd fluctuation | moke comin
ns in the | g from the stack
number of rail o
vember 1970 and | ks of the calcium
cars within the p
January 1971. | n carbide furnac | 1† | 25 X | | nd fluctuation | moke comin
ns in the | g from the stack
number of rail o
vember 1970 and | ks of the calcium
cars within the p
January 1971. | n carbide furnac | 1† | 25) | | nd fluctuation | moke comin
ns in the | g from the stack
number of rail o
vember 1970 and | ks of the calcium
cars within the p
January 1971. | n carbide furnac | 1† | 25X | | nd fluctuation | moke comin
ns in the | g from the stack
number of rail o
vember 1970 and | ks of the calcium
cars within the p
January 1971. | n carbide furnac | 1† | 25X | | nd fluctuation | moke comin
ns in the
ting in No | g from the stack
number of rail o
vember 1970 and
REFERE | ks of the calcium
cars within the p
January 1971. | m carbide furnac | 1† | 25X | | nd fluctuation as also opera | moke cominns in the ting in No | g from the stack number of rail o vember 1970 and REFERE | al Plant Pongunc | m carbide furnac | 1† | | | nd fluctuation | moke cominns in the ting in No | g from the stack number of rail o vember 1970 and REFERE | ks of the calcium
cars within the p
January 1971. | m carbide furnac | 1† | | | cia. RCS - I | moke cominns in the ting in No | g from the stack number of rail o vember 1970 and REFERE | al Plant Pongunc | m carbide furnac | 1† | 25X
25X
25X | 25X1 TOP SECRET RUFF 25X1 25X1 FIGURE 4. SUNCHON CHEMICAL PLANT, NORTH KOREA, TOP SECRET RUFF 25X1 25X1 25X1 | | TOP SECRET | r RUFF | | | |--|---|--|-------------------------------|-------------| | | | | | | | NSTALLATION OR ACTIVITY NAME | | | COUNT | RY | | | | | | | | unchon Chemical Plant TM COORDINATES GEOGRAPHIC | COORDINATES | | l | KN | | i ' | N 125-56-35E | | | | | AP REFERENCE | | | | | | 5th RTS. USATC, Series 2 | 00, Sheet M0380-3HL | ., 5th ed, Feb 6 | 8, Scale 1:200, | ,000 | | (SECRET) | | | | | | ATEST IMAGERY USED | NEG | ATION DATE (If required | 1) | | | | | | | | | | | | NA | | | | BASIC DESCR | IPTION | | | | Minor changes have b | een observed at Sun | chon Chemical F | Plant since Sent | ember | | 968, the date of the lat | est photography use | d in the previo | ous report. In | | | ovember 1969, the ore ha
uildings had been dismar | ndling facilities h
tled — In March 197 | ad been expande
O additions wer | ed, and four sup | port | | everal small support bui | Idings. These addi- | tions were comp | lete by Septemb | er | | 970 (see Figure 4). No | changes were observ | ed at the proce | ssing facilitie | es. | | | | | | | | Smoke seen coming fr | om the stack of the | rotary kiln bu | ilding in Novem | nber | | 969, September 1970, and | January 1971 indic | ated that the p | lant was operat | ing | | 969, September 1970, and
n these dates. It could | January 1971 indicators not be determined | ated that the p
if the plant wa | lant was operat | ing | | 969, September 1970, and | January 1971 indic
not be determined
ity of the photogra | ated that the p
if the plant wa
phy. | lant was operat | ing | | 969, September 1970, and
n these dates. It could | January 1971 indicators not be determined | ated that the p
if the plant wa
phy. | lant was operat | ing | | 969, September 1970, and
n these dates. It could | January 1971 indic
not be determined
ity of the photogra | ated that the p
if the plant wa
phy. | lant was operat | ing | | 969, September 1970, and
n these dates. It could | January 1971 indic
not be determined
ity of the photogra | ated that the p
if the plant wa
phy. | lant was operat | ing | | 969, September 1970, and
n these dates. It could | January 1971 indic
not be determined
ity of the photogra | ated that the p
if the plant wa
phy. | lant was operat | ing | | 969, September 1970, and
n these dates. It could | January 1971 indic
not be determined
ity of the photogra | ated that the p
if the plant wa
phy. | lant was operat | ing | | 969, September 1970, and
n these dates. It could | January 1971 indic
not be determined
ity of the photogra | ated that the p
if the plant wa
phy. | lant was operat | ing | | 969, September 1970, and
n these dates. It could | January 1971 indic
not be determined
ity of the photogra | ated that the p
if the plant wa
phy. | lant was operat | ing | | 969, September 1970, and
n these dates. It could | January 1971 indic
not be determined
ity of the photogra | ated that the p
if the plant wa
phy. | lant was operat | ing | | 969, September 1970, and
n these dates. It could | January 1971 indic
not be determined
ity of the photogra | ated that the p
if the plant wa
phy. | lant was operat | ing | | 969, September 1970, and
n these dates. It could | January 1971 indic
not be determined
ity of the photogra | ated that the p
if the plant wa
phy. | lant was operat | ing | | 969, September 1970, and
n these dates. It could | January 1971 indic
not be determined
ity of the photogra | ated that the p
if the plant wa
phy. | lant was operat | ing | | 969, September 1970, and
n these dates. It could | January 1971 indic
not be determined
ity of the photogra | ated that the p
if the plant wa
phy. | lant was operat | ing | | 969, September 1970, and
n these dates. It could | January 1971 indic
not be determined
ity of the photogra | ated that the p
if the plant wa
phy. | lant was operat | ing | | 969, September 1970, and
n these dates. It could | January 1971 indic
not be determined
ity of the photogra | ated that the p
if the plant wa
phy. | lant was operat | ing | | 969, September 1970, and nothese dates. It could gar and a | January 1971 indicanot be determined ity of the photogra REFERENCES | ated that the pif the plant wa | lant was operats operating in | ing | | 969, September 1970, and n these dates. It could 970 due to the poor qual | January 1971 indic
not be determined
ity of the photogra | ated that the pif the plant wa | lant was operats operating in | ing | | 969, September 1970, and n these dates. It could 970 due to the poor qual | January 1971 indicond be determined ity of the photogra REFERENCES | ated that the pif the plant wa | lant was operats operating in | ing | # **Top Secret** ## **Top Secret**